86 research outputs found

    Natural convection in square enclosures differentially heated at sides using alumina-water nanofluids with temperature-dependent physical properties

    Get PDF
    Laminar natural convection of Al2O3 + H2O nanofluids inside square cavities differentially heated at sides is studied numerically. A computational code based on the SIMPLE-C algorithm is used for the solution of the system of the mass, momentum and energy transfer governing equations. Assuming that the nanofluid behaves like a single-phase fluid, these equations are the same as those valid for a pure fluid, provided that the thermophysical properties appearing in them are the nanofluid effective properties. The thermal conductivity and dynamic viscosity of the nanofluid are calculated by means of a couple of empirical equations based on a wide variety of experimental data reported in the literature. The other effective properties are evaluated by the conventional mixing theory. Simulations are performed for different values of the nanoparticle volume fraction in the range 0-0.06, the diameter of the suspended nanoparticles in the range 25-100 nm, the temperature of the cooled sidewall in the range 293-313 K, the temperature of the heated sidewall in the range 298-343 K, and the Rayleigh number of the base fluid in the range 103-107. All computations are executed in the hypothesis of temperature-dependent effective properties. The main result obtained is the existence of an optimal particle loading for maximum heat transfer, that is found to increase as the size of the suspended nanoparticles is decreased, and the nanofluid average temperature is increased

    Natural convection from a pair of differentially-heated horizontal cylinders aligned side by side in a nanofluid-filled square enclosure

    Get PDF
    A two-phase model based on the double-diffusive approach is used to perform a numerical study on natural convection from a pair of differentially-heated horizontal cylinders set side by side in a nanofluid-filled adiabatic square enclosure. The study is conducted under the assumption that Brownian diffusion and thermophoresis are the only slip mechanisms by which the solid phase can develop a significant relative velocity with respect to the liquid phase. The system of the governing equations of continuity, momentum and energy for the nanofluid, and continuity for the nanoparticles, is solved by the way of a computational code which incorporates three empirical correlations for the evaluation of the effective thermal conductivity, the effective dynamic viscosity, and the thermophoretic diffusion coefficient, all based on a wide number of literature experimental data. The pressure-velocity coupling is handled through the SIMPLE-C algorithm. Simulations are executed for three different nanofluids, using the diameter and the average volume fraction of the suspended nanoparticles, as well as the cavity width, the inter-cylinder spacing, the average temperature of the nanofluid, and the temperature difference imposed between the cylinders, as controlling parameters, whose effects are thoroughly analyzed and discussed. It is found that the impact of the nanoparticle dispersion into the base liquid increases remarkably with increasing the average temperature, whereas it increases just moderately as the nanoparticle size decreases, as well as the imposed temperature difference and the cavity width increase. Conversely, the distance between the cylinders seems to have marginal effects. Moreover, an optimal particle loading for maximum heat transfer is detected for most configurations investigated

    Buoyancy-induced convection of water-based nanofluids in differentially-heated horizontal Semi-Annuli

    Get PDF
    A two-phase model based on the double-diffusive approach is used to perform a numerical study on natural convection of water-based nanofluids in differentially- heated horizontal semi-annuli, assuming that Brownian diffusion and thermophoresis are the only slip mechanisms by which the solid phase can develop a significant relative velocity with respect to the liquid phase. The system of the governing equations of continuity, momentum, and energy for the nanofluid, and continuity for the nanoparticles, is solved by the way of a computational code which incorporates three empirical correlations for the evaluation of the effective thermal conductivity, the effective dynamic viscosity, and the thermophoretic diffusion coefficient, all based on a wide number of literature experimental data. The pressure-velocity coupling is handled through the SIMPLE-C algorithm. Numerical simulations are executed for three different nanofluids, using the diameter and the average volume fraction of the suspended nanoparticles, the cavity size, the average temperature, and the temperature difference imposed across the cavity, as independent variables. It is found that the impact of the nanoparticle dispersion into the base liquid increases remarkably with increasing the average temperature, whereas, by contrast, the other controlling parameters have moderate effects. Moreover, at temperatures of the order of room temperature or just higher, the heat transfer performance of the nanofluid is significantly affected by the choice of the solid phase material

    Natural convection of water near 4°C in a bottom-cooled enclosure

    Get PDF
    A study of natural convection in water-filled square enclosures whose bottom wall is cooled at 0°C, whereas the top wall is partially or entirely heated at a temperature ranging between 10°C and 30°C is performed numerically through a computational code based on the SIMPLE-C algorithm, assuming temperature-dependent physical properties, for cavity widths in the range 1 cm-10 cm, with the main aim to point out the basic heat and momentum transfer features

    Buoyancy-induced convection of water-based nanofluids in differentially-heated horizontal Semi-Annuli

    Get PDF
    A two-phase model based on the double-diffusive approach is used to perform a numerical study on natural convection of water-based nanofluids in differentially- heated horizontal semi-annuli, assuming that Brownian diffusion and thermophoresis are the only slip mechanisms by which the solid phase can develop a significant relative velocity with respect to the liquid phase. The system of the governing equations of continuity, momentum, and energy for the nanofluid, and continuity for the nanoparticles, is solved by the way of a computational code which incorporates three empirical correlations for the evaluation of the effective thermal conductivity, the effective dynamic viscosity, and the thermophoretic diffusion coefficient, all based on a wide number of literature experimental data. The pressure-velocity coupling is handled through the SIMPLE-C algorithm. Numerical simulations are executed for three different nanofluids, using the diameter and the average volume fraction of the suspended nanoparticles, the cavity size, the average temperature, and the temperature difference imposed across the cavity, as independent variables. It is found that the impact of the nanoparticle dispersion into the base liquid increases remarkably with increasing the average temperature, whereas, by contrast, the other controlling parameters have moderate effects. Moreover, at temperatures of the order of room temperature or just higher, the heat transfer performance of the nanofluid is significantly affected by the choice of the solid phase material

    Double-Diffusive Effects on the Onset of Rayleigh-Benard Convection of Water-Based Nanofluids

    Get PDF
    A numerical study on the Rayleigh-Benard convection in a shallow cavity filled with different metal-oxide water-based nanofluids is presented through a two-phase model, which accounts for the effects of the Brownian diffusion and thermophoresis, at variable properties with temperature. Numerical simulations are executed for different values of the average volume fraction of the nanoparticles, different aspect ratios of the enclosure, as well as for temperature difference between the bottom and the top walls. It is found that the dispersion of the nanoparticle into the base fluid increases the stability of the nanofluid layer, determining the conditions for the onset of convection also with reference to the confinement of the nanofluid

    A new tri-generation system: thermodynamical analysis of a micro compressed air energy storage

    Get PDF
    There is a growing interest in the electrical energy storage system, especially for matching intermittent sources of renewable energy with customers’ demand. Furthermore, it is possible, with these system, to level the absorption peak of the electric network (peak shaving) and the advantage of separating the production phase from the exertion phase (time shift). CAES (compressed air energy storage systems) are one of the most promising technologies of this field, because they are characterized by a high reliability, low environmental impact and a remarkable energy density. The main disadvantage of big systems is that they depend on geological formations which are necessary to the storage. The micro-CAES system, with a rigid storage vessel, guarantees a high portability of the system and a higher adaptability even with distributed or stand-alone energy productions. This article carries out a thermodynamical and energy analysis of the micro-CAES system, as a result of the mathematical model created in a Matlab/Simulink® environment. New ideas will be discussed, as the one concerning the quasi-isothermal compression/expansion, through the exertion of a biphasic mixture, that will increase the total system efficiency and enable a combined production of electric, thermal and refrigeration energies. The exergy analysis of the results provided by the simulation of the model reports that more than one third of the exergy input to the system is lost. This is something promising for the development of an experimental device

    Thermal inertia of hollow wall blocks: actual behavior and myths

    Get PDF
    In the context of growing requirements to save energy in buildings and high objectives for Net Zero Energy Buildings (NZEBs) in Europe, strong emphasis is placed on the thermal performance of building envelopes, and in particular on thermal inertia to save cooling energy. High thermal inertia of outer walls leads to a mitigation of the daily heat wave, reducing cooling peak load and energy demand. Moreover, building envelopes with high heat capacity act as heat storages, increasing the effectiveness of natural ventilation for thermal comfort through a night-day energy shifting. Even though there are some papers available in the open literature on dynamic heat transfer through hollow bricks, yet common calculation methods are applicable to homogeneous layers only. That is the case of ISO 13786 regulation "Thermal performance of building components - Dynamic thermal characteristics - Calculation methods", for example. On the other hand, hollow blocks are very commonly used in building envelopes. Thus, available methods are not suitable for prediction of dynamic thermal performances. On the other hand, the widely common assumption that high mass means high thermal inertia leads to the use of higher mass blocks or bricks. Yet, numerical and experimental studies on thermal inertia of hollow envelope-components have not confirmed this general assumption, even though no systematic analysis has been found in the open literature. In this framework, numerical simulations of the thermal performance of hollow bricks have been done with a specifically-developed finite-difference computational code. Three common basic shapes with different void fraction and thermal properties have been analyzed with a triangular pulse solicitation, in order to highlight the relevance of front mass and other parameters on the thermal inertia, measured through heat wave delay. Results show that wall front mass is often misleading as thickness, number of cavities and clay thermal diffusivity are more important

    The role of artificial intelligence in the management of trigeminal neuralgia

    Get PDF
    Trigeminal neuralgia (TN) is the most frequent facial pain. It is difficult to treat pharmacologically and a significant amount of patients can become drug-resistant requiring surgical intervention. From an etiologically point of view TN can be distinguished in a classic form, usually due to a neurovascular conflict, a secondary form (for example related to multiple sclerosis or a cerebello-pontine angle tumor) and an idiopathic form in which no anatomical cause is identifiable. Despite numerous efforts to treat TN, many patients experience recurrence after multiple operations. This fact reflects our incomplete understanding of TN pathogenesis. Artificial intelligence (AI) uses computer technology to develop systems for extension of human intelligence. In the last few years, it has been a widespread of AI in different areas of medicine to implement diagnostic accuracy, treatment selection and even drug production. The aim of this mini-review is to provide an up to date of the state-of-art of AI applications in TN diagnosis and management

    Neuro-Oncology Multidisciplinary Tumor Board: The Point of View of the Neuroradiologist

    Get PDF
    Background: The multi-disciplinary tumor board (MTB) is essential to quality cancer care and currently recommended to offer the best personalized clinical approach, but little has been published regarding MTBs in neuro-oncology (nMTBs). The aim of the present paper is to describe our nMTB, to evaluate its impact on clinical management decisions, and to assess the role of neuroradiologists. Methods: The retrospective evaluation of the cases discussed at our nMTB from March 2017 to March 2020. From the electronic records, we extracted epidemiological, clinical and other specific data of nMTB. From the radiological records, we calculated data relating to the number, time for revision, and other specifications of MRI re-evaluation. Statistical analysis was performed. Results: a total of 447 discussions were analyzed, representing 342 patients. The requests for case evaluations came from radiation oncologists (58.8%) and neurosurgeons (40.5%), and were mainly addressed to the neuroradiologist (73.8%). The most frequent questions were about the treatment's changes (64.4%). The change in patient treatment was reported in 40.5% of cases, 76.8% of these were based on the neuroradiologic assessment. A total of 1514 MRI examinations were re-evaluated, employing approximately 67 h overall. The median of the MRI exams reviewed per patient was 3 (min-max 1-12). Conclusions: Our study supported that the multidisciplinary approach to patient care can be particularly effective in managing brain tumors. A review by an expert neuroradiologist impacts patient management in the context of nMTBs, but has costs in terms of the time and effort spent preparing for it
    • …
    corecore